Non - parametric Estimation of Operational Risk and Expected Shortfall
نویسنده
چکیده
This paper proposes improvements to advanced measurement approach (AMA) to estimating operational risks, and applies the improved methods to US business losses categorised into five business lines and three event types operational losses. The AMA involves, among others, modelling a loss severity distribution and estimating the Expected Loss and the 99.9% operational value-at-risk (OpVaR). These measures form a basis for calculating the levels of regulatory and economic capitals required to cover risks arising from operational losses. In this paper, Expected Loss and OpVaR are estimated consistently and efficiently by nonparametric methods, which use the large (tail) losses as primary inputs. In addition, the 95% intervals for the underlying true OpVaR are estimated by the weighted empirical likelihood method. As an alternate measure to OpVaR, the Expected Shortfall a coherent riskis also estimated. The empirical findings show that the interval estimates are asymmetric, with very large upper bounds, highlighting the extent of uncertainties associated with the 99.9% OpVaR point estimates. The Expected Shortfalls are invariably greater than the corresponding OpVaRs. The heavier the loss severity distribution the greater the difference between OpVaR and Expected Shortfall, from which we infer that the latter would provide the right level of capital to cover risks than would the former, particularly during crises.
منابع مشابه
The Evaluation of Systemic Risk in the Iran Banking System by Marginal Expected Shortfall (MES) Criterion
Today, Systemic Risk is being analyzed as one of the major issues in financial institutions. Banks are one of the institutions that can be linked to systemic risk based on global experience. Therefore, in the study, we evaluate the systemic risk in the banking system of the country via the marginal expected shortfall (MES) criterion. For the purpose of the present study, 17 banks listed on the ...
متن کاملBUSINESS ANALYTICS WORKING PAPER SERIES Bayesian Semi-parametric Expected Shortfall Forecasting in Financial Markets
Bayesian semi-parametric estimation has proven effective for quantile estimation in general and specifically in financial Value at Risk forecasting. Expected short-fall is a competing tail risk measure, involving a conditional expectation beyond a quantile, that has recently been semi-parametrically estimated via asymmetric least squares and so-called expectiles. An asymmetric Gaussian density ...
متن کاملParametric Return Density Estimation for Reinforcement Learning
Most conventional Reinforcement Learning (RL) algorithms aim to optimize decisionmaking rules in terms of the expected returns. However, especially for risk management purposes, other risk-sensitive criteria such as the value-at-risk or the expected shortfall are sometimes preferred in real applications. Here, we describe a parametric method for estimating density of the returns, which allows u...
متن کاملBayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution
A parametric approach to estimating and forecasting Value-at-Risk (VaR) and expected shortfall (ES) for a heteroscedastic financial return series is proposed. The well-known GJR–GARCH form models the volatility process, capturing the leverage effect. To capture potential skewness and heavy tails, the model assumes an asymmetric Laplace form as the conditional distribution of the series. Further...
متن کاملSimulation of the Annual Loss Distribution in Operational Risk via Panjer Recursions and Volterra Integral Equations for Value at Risk and Expected Shortfall Estimation
Following the Loss Distributional Approach (LDA), this article develops two procedures for simulation of an annual loss distribution for modeling of Operational Risk. First, we provide an overview of the typical compound-process LDA used widely in Operational Risk modeling, before expanding upon the current literature on evaluation and simulation of annual loss distributions. We present two nov...
متن کامل